a2 United States Patent

US009436629B2

10) Patent No.: US 9,436,629 B2

Baratam et al. 45) Date of Patent: Sep. 6, 2016
(54) DYNAMIC BOOT IMAGE STREAMING (56) References Cited
(71) Applicant: Marvell World Trade Ltd., St. U.S. PATENT DOCUMENTS
Michael (BB) 5,155,833 A 10/1992 Cullison et al.
. . 5,390,165 A 2/1995 Tuch
(72) Inventors: Vamsi Krishna Baratam, . 5481733 A 1/1996 Douglis et al.
Westborough, MA (US); Tolga Nihat 5,617,118 A 4/1997 Thompson
Aytek, Framingham, MA (US) 5673416 A 9/1997 Chee et al.
5,696,989 A * 12/1997 Miura et al. ... 710/24
: . 5,771,356 A 6/1998 Leger et al.
(73) Assignee: M?lrvell World Trade Ltd., St. 5885835 A 10/1998 Tsfeld of al.
Michael (BB) 5.884.099 A 3/1999 Klingelhofer
6,014,722 A 1/2000 Rudin et al.
(*) Notice: Subject to any disclaimer, the term of this Continued
patent is extended or adjusted under 35 (Continued)
US.C. 154(b) by 669 days. FOREIGN PATENT DOCUMENTS
(21) Appl No.: 13/676,701 CN 1140272 1/1997
CN 102272734 9/2014
(22) Filed: Nov. 14, 2012 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0124844 Al May 16, 2013 “EP Intent to Grant”, European Patent Application No. 09803951.4,
May 14, 2013, 13 Pages.
(Continued)
Related U.S. Application Data
(60) Provisional application No. 61/560,217, filed on Nov. ~ £*imary Examiner — Phil Nguyen
15, 2011. (57) ABSTRACT
(51) Int. CL The present disclosme describes apparatuses and techniques
GO6F 9/00 (2006.01) for dynamic boot image streaming. In some aspects a
GO6F 15/177 (2006.01) memory controller that is streaming multiple boot images
GO6F 1328 (2006.01) from a first memory to a second memory is stalled, a
GOGF 9/44 (2006.01) descriptor for streaming one of the multiple boot images
(52) US.Cl from the first memory to a non-contiguous memory location
CPC ) GOGF 13/28 (2013.01); GOGF 9/441 is generated while the memory controller is stalled, and the
"""""""" R (2013.01) memory controller is resumed effective to cause the memory
(58) Field of Classification S h ’ controller to stream, based on the descriptor generated while
CII(:C ot SAasstlication G?ch 0/4401: GOGE 9/4411 the memory controller is stalled, the second boot image to
USPC """""""""""""" ’ 713/324. 300 the non-contiguous memory location.

See application file for complete search history.

20 Claims, 7 Drawing Sheets

[— 300

Initiate Streaming of Multiple Boot Images
from a First Memory to a Second Memory

!

Stall a Memory Controller that is Streaming the
Multiple Boot Images After a First Boot Image
is Streamed to the Second Memory

!

'd ™\
Generate, While the Memory Controller is Stalled, a Descriptor
for Streaming a Second Boot Image to a Non-Contiguous
Location of the Second Memory or to a Third Memory

!

Resume the Memory Controller to Stream the Second
Boot Image to the Non-Contiguous Location of the
Second Memory or to the Third Memory
208




US 9,436,629 B2
Page 2

(56)

6,092,108
6,145,069
6,230,277
6,330,626
6,463,509
6,564,318
6,601,167
6,678,790
6,711,447
6,756,988
6,823,472
6,832,280
6,901,298
7,089,419
7,103,788
7,126,913
7,194,638
7,266,842
7,299,365
7,308,591
7,356,707
7,496,952
7,571,216
7,596,614
7,606,230
7,620,784
7,774,635
7,788,670
7,818,389
7,873,841
7,898,857
7,995,596
8,000,284
8,001,592
8,095,816
8,117,478
8,139,521
8,171,309
8,296,555
8,321,706
8,327,056
8,443,187
8,443,211
8,510,560
8,688,968
9,141,394
2002/0069354
2002/0087816
2003/0014368
2003/0200453
2003/0200454
2003/0208675
2003/0236991
2004/0015621
2004/0103272
2004/0125679
2004/0158669
2004/0257462
2004/0266386
2005/0033869
2005/0055547
2005/0086551
2005/0108171
2005/0138365
2005/0156925
2005/0177674
2005/0278523
2006/0004946
2006/0036897
2006/0072748
2006/0075259
2006/0123248
2006/0136735
2006/0142906
2006/0156390

References Cited

U.S. PATENT DOCUMENTS

A

A

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
B2
Bl
Bl
Bl
B2
B2
B2
B2
B2
Bl
B2
Bl
B2
B2
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
B2
Bl
B2
B2
Bl
Bl
B2
Bl
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

7/2000
11/2000
5/2001
12/2001
10/2002
5/2003
7/2003
1/2004
3/2004
6/2004
11/2004
12/2004
5/2005
8/2006
9/2006
10/2006
3/2007
9/2007
11/2007
12/2007
4/2008
2/2009
8/2009
9/2009
10/2009
11/2009
8/2010
8/2010
10/2010
1/2011
3/2011
8/2011
8/2011
8/2011
1/2012
2/2012
3/2012
5/2012
10/2012
11/2012
12/2012
5/2013
5/2013
8/2013
4/2014
9/2015
6/2002
7/2002
1/2003
10/2003
10/2003
11/2003
12/2003
1/2004
5/2004
7/2004
8/2004
12/2004
12/2004
2/2005
3/2005
4/2005
5/2005
6/2005
7/2005
8/2005
12/2005
1/2006
2/2006
4/2006
4/2006
6/2006
6/2006
6/2006
7/2006

DiPlacido et al.
Dye

Nakaoka et al.
Dennin et al.
Teoman et al.
Gharda et al.
Gibson et al.
Kumar

Saeed

Wang et al.
DeKoning et al.
Malik et al.
Govindaraj et al.
Foster et al.
Souza et al.
Patel et al.
Larky

Foster et al.
Evans
Dubinsky
Foster et al.
Edwards et al.
McRae et al.
Saunderson et al.
Cohen et al.
Panabaker
Shiota

Bodas et al.
Chiang et al.
Mullis, II et al.
Kirsch et al.
Kuila et al.
Lott et al.
Hatakeyama
Chan

Liu et al.
Mukherjee et al.
Poo

Chu

Zhang

Chan

Orr

Zhao et al.
Lambert et al.
Chu et al.
Sakarda

Fallon et al.
Atkinson et al.
Leurig et al.
Foster et al.
Foster et al.
Burokas et al.
Letsinger
Tanaka .......ccoccecvevvevnnnns 710/22
Zimmer et al.
Kwean

Weng et al.
Goris et al.
Kuo

Cline
Kawamura
Wirasinghe et al.
Bajikar et al.
Bellipady et al.
Fong et al.
Ober et al. ....ccoevvivnrnne 711/5
Fortin et al.
Shah et al.

Lin et al.

Buer

Bajikar et al.
Porter et al.
Plotkin et al.
Brozovich et al.
Baugher

2006/0253716 Al  11/2006 Dhiman et al.

2006/0259656 Al* 11/2006 Sullivan ................ 710/22
2007/0005824 Al 1/2007 Howard

2007/0011445 Al 1/2007 Waltermann et al.

2007/0038866 Al 2/2007 Bardsley et al.

2007/0073915 Al* 3/2007 Go et al. ..ccccoovvevninnne. 710/11
2007/0097904 Al 5/2007 Mukherjee et al.

2007/0174602 Al 7/2007 Kao

2007/0220501 Al 9/2007 Yanagawa et al.

2007/0234028 Al  10/2007 Rothman et al.

2007/0260905 Al  11/2007 Marsden et al.

2007/0277051 Al  11/2007 Reece et al.

2007/0297606 Al  12/2007 Tkacik et al.

2008/0005549 Al 1/2008 Ke

2008/0016313 Al 1/2008 Murotake et al.

2008/0028243 Al 1/2008 Morisawa

2008/0034411 Al 2/2008 Aoyama

2008/0046732 Al 2/2008 Fu et al.

2008/0066075 Al 3/2008 Nutter et al.

2008/0072311 Al 3/2008 Mullick et al.

2008/0104422 Al 5/2008 Mullis et al.

2008/0108322 Al 5/2008 Upp

2008/0120717 Al 5/2008 Shakkarwar

2008/0165952 Al 7/2008 Smith et al.

2008/0298289 Al  12/2008 Jeyaseelan

2008/0313462 Al  12/2008 Zhao et al.

2009/0006658 Al 1/2009 Gough

2009/0049222 Al 2/2009 Lee et al.

2009/0199031 Al 8/2009 Zhang

2009/0254771 Al* 10/2009 So etal. ..o 713/323
2009/0327608 Al  12/2009 Eschmann et al.

2010/0023747 Al 1/2010 Asnaashari et al.

2010/0058045 Al 3/2010 Borras et al.

2010/0070751 Al 3/2010 Chu

2010/0174934 Al 7/2010 Zhao

2010/0217935 Al 8/2010 Cho et al.

2012/0287337 Al* 11/2012 Kumar et al. .......... 348/425.1
2013/0031346 Al 1/2013 Sakarda

2013/0046966 Al 2/2013 Chu

FOREIGN PATENT DOCUMENTS

EP 1847911 10/2007
JP 08076872 3/1996
JP 09044418 2/1997
JP 10320302 12/1998
JP 2002099502 4/2002
JP 2002215409 8/2002
JP 2004005254 1/2004
JP 2005011120 1/2005
JP 5565778 6/2014
WO WO0-2013019423 2/2013
WO WO0-2013074797 5/2013

OTHER PUBLICATIONS

“Extensions to Direct Link Setup (DLS) Comments”, IEEE, P802.
11z, Jul. 2009, pp. 1-3.

“Final Office Action”, U.S. Appl. No. 12/098,254, May 18, 2011, 11
ages.

gFignal Office Action”, U.S. Appl. No. 12/541,731, May 31, 2012, 11

pages.

“Final Office Action”, U.S. Appl. No. 12/178,268, May 25, 2011, 13
ages.

gFignal Office Action”, U.S. Appl. No. 12/101,668, May 10, 2012, 8

pages.

“Foreign Office Action”, Chinese Application No. 200980136849.9,

May 24, 2013, 20 Pages.

“Foreign Office Action”, Chinese Application No. 200980153758.6,

Apr. 27, 2013, 14 pages.

“Foreign Office Action”, Japanese Application No. 2011-527899,

Aug. 13, 2013, 2 pages.

“Foreign Office Action”, Furopean Patent Application No.

09803951 .4, May 24, 2012, 3 pages.

“Foreign Office Action”, Japanese Application No. 2011-527899,

Nov. 6, 2012, 4 pages.

“Foreign Office Action”, Japanese Application No. 2011-527899,

Apr. 16, 2013, 5 pages.



US 9,436,629 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“Foreign Office Action”, FEuropean Patent Application No.
09803951.4, Dec. 13, 2012, 6 pages.

“Foreign Office Action”, Japanese Application No. 2011-544456,
Jul. 9, 2013, 6 pages.

“Foreign Office Action”, Japanese Application No. 2011-544456,
Jan. 29, 2013, 7 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Jun. 20,
2013, 10 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/559,987, Nov. 9,
2011, 10 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/178,268, Dec. 22,
2010, 10 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/541,731, Sep. 4,
2012, 11 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/657,511, Mar. 28,
2013, 13 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/178,268, Dec. 21,
2011, 13 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/683,056, Nov. 8,
2013, 5 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/333,551, Apr. 6,
2012, 5 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/636,558, Jan. 10,
2012, 6 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/598,282, Oct. 16,
2013, 6 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/271,761, Oct. 3,
2011, 6 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/101,668, Apr. 5,
2011, 7 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/098,254, Jan. 14,
2011, 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/636,558, May 29,
2012, 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/101,668, Aug. 9,
2012, 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Oct. 1,
2013, 9 pages.

“Non-Final Office Action”, U.S. Appl. No. 12/541,731, Oct. 21,
2011, 9 pages.

“Notice of Allowance”, U.S. Appl. No. 12/636,558, Jan. 9, 2013, 4
pages.

“Notice of Allowance”, U.S. Appl. No. 12/098,254, Dec. 14, 2011,
4 pages.

“Notice of Allowance”, U.S. Appl. No. 13/333,551, May 30, 2012,
4 pages.

“Notice of Allowance”, U.S. Appl. No. 12/178,268, Jul. 2, 2012, 4
pages.

“Notice of Allowance”, U.S. Appl. No. 12/098,254, Sep. 28, 2011,
4 pages.

“Notice of Allowance”, U.S. Appl. No. 12/559,987, Jun. 15, 2012,
5 pages.

“Notice of Allowance”, U.S. Appl. No. 12/101,668, Jan. 11, 2013,
6 pages.

“Notice of Allowance”, U.S. Appl. No. 12/271,761, Jan. 3, 2012, 6
pages.

“Notice of Allowance”, U.S. Appl. No. 12/541,731, Apr. 2, 2013, 8
pages.

“Notice of Allowance”, U.S. Appl. No. 13/657,511, Nov. 4, 2013, 9
pages.

“Part 11—Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications”, Information Technology—
Telecommunications & Information Exchange Between Systems . .
. International Standard, ISO/IEC 8802-11, First Ed., 1999, pp.
1-531.

“PCT Partial Search Report”, Application Serial No. PCT/US2008/
078343, Partial International Search, Mar. 5, 2009, 2 pages.

“PCT Search Report”, Application No. PCT/US2009/056973, Nov.
4, 2009, 13 pages.

“PCT Search Report”, Application Serial No. PCT/US2008/078343,
May 18, 2009, 5 pages.

“PCT Search Report and Written Opinion”, Application No. PCT/
US2009/067767, Mar. 26, 2010, 12 pages.

“PCT Search Report and Written Opinion”, Application No. PCT/
US2012/047426, Oct. 19, 2012, 7 pages.

“Restriction Requirement”, U.S. Appl. No. 12/101,668, Sep. 22,
2011, 6 pages.

“Supplemental Notice of Allowance”, U.S. Appl. No. 13/333,551,
Oct. 23, 2012, 2 pages.

“Supplemental Notice of Allowance”, U.S. Appl. No. 12/101,668,
Feb. 8, 2013, 4 Pages.

“Final Office Action”, U.S. Appl. No. 13/552,421, Mar. 16, 2015, 10
pages.

“Final Office Action”, U.S. Appl. No. 13/863,079, Jan. 15, 2015, 7
pages.

“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Apr. 9,
2015, 7 pages.

“Final Office Action”, U.S. Appl. No. 13/863,079, May 7, 2014, 7
pages.

“Foreign Decision to Grant”, JP Application No. 2011-544456, May
20, 2014, 2 pages.

“PCT Search Report and Written Opinion”, Application No. PCT/
US2012/065290, May 2, 2013, 9 pages.
“Foreign Notice of Allowance”,
200980153758.6, Jul. 15, 2014, 4 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/552,421, Sep. 30,
2014, 23 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/863,079, Aug. 27,
2014, 6 pages.

“Foreign Office Action”, Japanese Application No. 2011-544456,
Dec. 3, 2013, 2 pages.

“Foreign Office Action”, CN Application No. 200980153758.6,
Dec. 30, 2013, 8 pages.

“Notice of Allowance”, U.S. Appl. No. 13/552,421, May 12, 2015,
4 pages.

“Notice of Allowance”, U.S. Appl. No. 13/552,421, Jun. 10, 2015,
5 pages.

“Non-Final Office Action”, U.S. Appl. No. 14/205,196, Feb. 5,
2016, 14 pages.

CN  Application No.

* cited by examiner



U.S. Patent Sep. 6, 2016 Sheet 1 of 7 US 9,436,629 B2
{— 100
102 1
(T T T T T “}\
: | \\ - =
104 -_ - ~
| D : - > .
: Q,!ji : [Processor(s) 114 ]
I | [ Computer-Readable 116 |
| | Storage Media
: | [ Volatile Memory 118 ]
. (e —
| |
: | (DRAM 126 )
| ) 1
: | Non-Volatile Memory 120
I
| | [Flash Memory 128 ]
I | b
I | [ Embedded Memory 122 ]
: : [Memory Controller 130 ]
' | (DMA Engine 132 )
| <\ 110 |
' !‘\\ | (Embedded Flash 134 )
B
I : [Stream Manager 1_35]
I | \
: | (170 Ports 138)
|
: \ "2 (Display 140)
1 |
: ﬁ | (Network Interface(s) 142)
I g
| |
! |
N e e e e e = -



U.S. Patent

Sep. 6, 2016

[ Embedded Flash

[ Boot Partition

[Boot Image-0

[Boot Image-1

[Boot Image-2

[Data Partition(s)

US 9,436,629 B2

Sheet 2 of 7
{— 200
7

202 |-~ [Header 212
206 } 1 - [Descriptor Data 214 ]
208 ) )
210 )

204 )

\,

Fig. 2



U.S. Patent Sep. 6, 2016 Sheet 3 of 7 US 9,436,629 B2

{— 300

Initiate Streaming of Multiple Boot Images
from a First Memory to a Second Memory
302

!

Stall a Memory Controller that is Streaming the
Multiple Boot Images After a First Boot Image
is Streamed to the Second Memory
304

!

Generate, While the Memory Controller is Stalled, a Descriptor
for Streaming a Second Boot Image to a Non-Contiguous
Location of the Second Memory or to a Third Memory
306

!

Resume the Memory Controller to Stream the Second
Boot Image to the Non-Contiguous Location of the
Second Memory or to the Third Memory
308

Fig. 3



U.S.

Patent

Sep. 6, 2016 Sheet 4 of 7 US 9,436,629 B2

\,

SRAM 124
132 Header 212 ]
|~

[ Embedded Flash
Boot Partition 202
[Boot Image-0 206
[Boot Image-1 208
[Boot Image-2 210
( Data Partition(s) 204)

DRAM 12
Boot Image-2 210)

( Non-Allocated Memory 402 )

Boot Image-1 2 8]

Fig. 4



U.S. Patent Sep. 6, 2016 Sheet 5 of 7 US 9,436,629 B2

[— 500

4 )
Send a Boot Initialization Command to a First Memory Device
502

\\
Y * ™

Cause a Controller of the First Memory Device to Execute a
Descriptor for Streaming a Header to a Second Memory Device
504

Y

Cause the Controller of the First Memory Device to
Execute a Link-to-Self Descriptor Effective to
Stall the Controller of the First Memory Device
506

Y

Process the Header to Construct an Additional Descriptor
for Streaming a Boot Image to Non-Contiguous
Location of the Second Memory Device
508

v

Point the Link-to-Self Descriptor to the Additional Descriptor
Effective to Resume the Controller for Streaming the Boot Image
to Non-Contiguous Location of the Second Memory Device
510

Fig. 5



U.S. Patent Sep. 6, 2016 Sheet 6 of 7 US 9,436,629 B2

{— 600

Send a Boot Initialization Command to a First Memory Device
602

Y

Cause a Controller of the First Memory Device to Execute a
Descriptor for Streaming a Header to a Second Memory Device
604

Y

Cause the Controller of the First Memory Device to
Execute a Link-to-Self Descriptor Effective to
Stall the Controller of the First Memory Device
606

Y

(" A
Process the Header to Construct an Additional Descriptor for
Streaming a Boot Image to a Third Memory Device
608

Y

4 h
Configure the Third Memory Device to Receive a Boot Image

Streamed from the First Memory Device
610

Y

Point the Link-to-Self Descriptor to the Additional Descriptor
Effective to Resume the Controller for Streaming
the Boot Image to the Third Memory Device
612

Fig. 6




U.S. Patent

Sep. 6, 2016

Sheet 7 of 7

US 9,436,629 B2

-
System-on-Chip (SoC) 700
'Y . N
I/0 Logic Control Microprocessor
102 1704
\\ \\
e e A
Memory Operating System
706 708
\Q \,
'Y e A
Memory Controller DMA Engine
130 132
. .
e r N
Embedded Flash Stream Manager
134 136
\\ \\
.

Fig. 7



US 9,436,629 B2

1
DYNAMIC BOOT IMAGE STREAMING

RELATED APPLICATION

This present disclosure claims priority to U.S. Provisional
Patent Application Ser. No. 61/560,217 filed Nov. 15, 2011,
the disclosure of which is incorporated by reference herein
in its entirety.

BACKGROUND

The background description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Work of the presently named inventors, to the extent it
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time of filing, are neither expressly nor impliedly admit-
ted as prior art against the present disclosure.

Computing and electronic devices often include various
types of memory for storing data of operating systems,
applications, or user files. Before an operating system and
applications are run on the device, however, low-level code
is used to configure and boot the device. When booting a
device, the low-level code is typically copied from one of
the memories and executed by a processor in order to
configure the components of the device for operation. The
memory storing the low-level code is often a non-volatile
memory, from which the low-level code is copied into
another memory prior to execution. Due to recent advances
in memory-controller technology, this low-level code may
be streamed to the other memory with minimal initialization
or overhead, which may increase a speed at which the device
boots.

Memory controllers capable of streaming the low-level
code from the non-volatile memory, however, stream the
low-level code to contiguous locations of the other memory.
This other memory, however, may not have enough capacity
to receive all of the low-level code or be a memory from
which execution of some of the low-level code is not
optimal. Accordingly, some partial solutions prevent stream-
ing until the memory controller is fully initialized. Waiting
until the memory controller is fully initialized, however,
often consumes considerable time and processing resources,
which results in slower device boot times.

SUMMARY

This summary is provided to introduce subject matter that
is further described below in the Detailed Description and
Drawings. Accordingly, this Summary should not be con-
sidered to describe essential features nor used to limit the
scope of the claimed subject matter.

A method is described for stalling a memory controller
that is streaming, via a direct memory access (DMA) opera-
tion, multiple boot images from a first memory to a second
memory, generating, while the memory controller is stalled,
a descriptor for streaming a second one of the multiple boot
images from the first memory to a non-contiguous memory
location, and resuming the memory controller effective to
cause the memory controller to stream, based on the descrip-
tor and via another DMA operation, the second boot image
to the non-contiguous memory location.

A memory storage device is described that includes
memory storage media storing multiple boot images execut-
able by a processor of a host device to initialize components
of the host device during a boot sequence, a header execut-
able by the processor of the host device to construct a series

10

20

25

30

35

40

45

50

55

60

65

2

of data transfer commands for streaming the multiple boot
images to non-contiguous locations of another memory
storage device, another data transfer command associated
with the header executable by a memory controller to stream
the header to a base address of the other memory storage
device, and a data link command executable by the control-
ler to stall the DMA engine effective to permit the header to
be executed from the other memory storage device by the
processor to construct the series of data transfer commands
for streaming the multiple boot images.

A computing device is described that includes a stream
manager that is configured to stall a memory controller
while the memory controller is streaming, via a direct
memory access (DMA) operation, multiple boot images
from a non-volatile memory of the computing device to a
volatile memory of the computing device, the memory
controller stalled after streaming a first one of the multiple
boot images to the volatile memory. Additionally, the stream
manager generates, while the memory controller is stalled
and based on the first boot image streamed to the volatile
memory, a descriptor for streaming a second one of the
multiple boot images from the non-volatile memory to a
non-contiguous location of the volatile memory. The stream
manager then resumes the memory controller effective to
cause the memory controller to stream, based on the descrip-
tor and via another DMA operation, the second boot image
to the non-contiguous location of the volatile memory.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other features and advantages will be apparent from the
description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the figures, the left-most digit of a reference number
identifies the figure in which the reference number first
appears. The use of the same reference numbers in different
instances in the description and the figures indicate like
elements.

FIG. 1 illustrates an operating environment having com-
puting devices in accordance with one or more aspects.

FIG. 2 illustrates an example of embedded flash memory
of FIG. 1 in accordance with one or more aspects.

FIG. 3 illustrates a method for stalling a memory con-
troller that is streaming multiple boot images.

FIG. 4 illustrates an example allocation of boot images in
accordance with one or more aspects.

FIG. 5 illustrates a method for streaming boot images to
non-contiguous locations of a memory device.

FIG. 6 illustrates a method for streaming boot images to
multiple memory devices.

FIG. 7 illustrates a System-on-Chip (SoC) environment
for implementing aspects of the techniques described herein.

DETAILED DESCRIPTION

Conventional techniques for streaming boot images
stream boot images from one memory to contiguous loca-
tions of another memory. For example, an alternate boot
mode of a memory controller may stream boot image data to
a base address of the other memory, and may not be
redirected or paused once the streaming of data begins. The
other memory, however, may not have sufficient capacity to
receive the boot images or may be a memory from which
execution of the boot images is not optimal. Thus, some of
the boot images may not be streamed or transferred until
after the memory controller is fully initialized to enable



US 9,436,629 B2

3

transfers to other preferred memories. Initializing the
memory controller, however, expends computing resources
and consumes time, which can slow device boot times.

This disclosure describes apparatuses and techniques for
dynamic boot image streaming, which enable boot images to
be streamed to non-contiguous memory locations and/or to
multiple memories. By so doing, the boot images can be
streamed to various memory locations without fully initial-
izing the memory controller, thereby conserving computing
resources, saving time, and/or reducing device boot times.

The following discussion describes an operating environ-
ment, techniques that may be employed in the operating
environment, and a System-on-Chip (SoC) in which com-
ponents of the operating environment can be embodied. In
the discussion below, reference is made to the operating
environment by way of example only.

Operating Environment

FIG. 1 illustrates an example of an operating environment
100 having computing devices 102, each of which are
capable of communicating, accessing, presenting, or pro-
cessing various data. Computing devices 102 include smart-
phone 104, tablet computer 106, multi-function printer 108,
and digital camera 110, and internet-protocol enabled tele-
vision 112 (IP TV 112). Although not shown, other configu-
rations of computing devices 102 are also contemplated such
as a desktop computer, server, mobile-internet device
(MID), gaming console, mobile hotspot, networked media
player, and so on.

Generally, computing devices 102 have operational states
ranging from an “off” state to an “on” state. These states may
include a fully off state, suspended state, sleep state, hiber-
nation state, idle state, active state, and the like. When
transitioning from a lower operational state to a higher
operational state (e.g., from an off state to an active state),
computing device 102 is booted. Booting computing device
102 includes transferring and/or executing low-level code to
configure components of computing device 102 for opera-
tion.

Each computing device 102 includes processor(s) 114
(e.g. an application processor) and computer-readable stor-
age media 116 (CRM 116). Processor 114 includes any
suitable number and/or type of processing cores, which may
be configured in any suitable manner (e.g., a heterogeneous
multi-core application processor). CRM 116 includes vola-
tile memory 118, non-volatile memory 120, and embedded
memory 122. Volatile memory 118 includes static random
access memory 124 (SRAM 124) and synchronous dynamic
random-access memory 126 (DRAM 126). Alternately or
additionally, volatile memory 118 may include other suitable
types of memory, such as random-access memory (RAM),
asynchronous dynamic RAM, double-data-rate RAM
(DDR), and the like.

Non-volatile memory 120 includes flash memory 128,
which may store data of computing device 102 persistently
when powered-down or suspended. Alternately or addition-
ally, non-volatile memory 120 may include other suitable
types of memory or storage devices such as non-volatile
RAM (NVRAM), read-only memory (ROM), solid-state
drives, magnetic or optical disk drives, and the like. Oper-
ating systems, applications, or user data (not shown) of
computing device 102 may be stored by, or executed from,
volatile memory 118, non-volatile memory 120, or any other
suitable type of CRM 116. Alternately or additionally,
operating systems and/or applications of computing device
102 may be embodied as firmware or other processor-
executable instructions, binaries, or code. Operating systems
and applications of device 102 are executable by processor

10

15

20

25

30

35

40

45

50

55

60

65

4

114 to provide a user interface, various functionalities,
and/or services of computing device 102.

Embedded memory 122 includes memory controller 130,
direct memory access engine 132 (DMA engine 132), and
embedded flash memory 134 (embedded flash 134). Embed-
ded memory 122, and components thereof, may be imple-
mented as an integrated memory device, such as an embed-
ded multimedia card (eMMC) device. Memory controller
130 enables access of embedded memory 122 and may
provide various data management functions for embedded
flash 134, such as error-correction coding, block manage-
ment, or wear leveling. Memory controller 130 may be
implemented as any suitable type of controller, such as a
secure digital (SD) host controller. Memory controller 130
supports a variety of data transfer operations, such as an
advanced direct memory access (ADMA) transfer algo-
rithm.

The ADMA ftransfer algorithm is a scatter gather algo-
rithm and operates via a set of transfer and link descriptors.
The descriptors may be organized by a descriptor table (not
shown), which may be programmed with descriptors
describing a series of data transfers between embedded
memory 122 and other memories of computing device 102.
The descriptors may be executed from the descriptor table
without interrupting software executing on processor 114
(e.g., a memory host driver). Memory controller 130 may
also support various boot modes, such as an alternate boot
mode capable of implementing ADMA transfers. Accord-
ingly, memory controller 130 may be configured to transfer
data of embedded flash 134 when computing device 102 is
booted.

DMA engine 132 enables direct memory access (DMA)
operations between embedded memory 122 and other
memories of computing device 102 (e.g., SRAM 124 or
DRAM 126). DMA operations transfer data from a source
memory to a destination memory without involving a
higher-level controller or processor. These DMA operations
may include single operation DMA algorithms as defined by
the secure digital (SD) host controller standard version 1.00.
Additionally, the DMA operations may include scatter
gather DMA algorithms (e.g., ADMA) as defined by the SD
host controller standard version 2.00. For example, DMA
engine 132 may transfer data from embedded flash 134 to
SRAM 124 via an ADMA transfer without involving or
interrupting memory controller 130 or processor 114.
Embedded flash 134 is accessible via memory controller 130
or DMA engine 132, and may contain low-level code (e.g.,
boot code or boot loaders) useful for booting computing
device 102.

Embedded flash 134 may be single-level cell (SLC) or
multi-level cell (MLC) based managed flash memory. In
some cases, embedded flash may include an area of SLC
flash memory and an area of ML.C flash memory. Embedded
flash 134 may contain boot code or other initialization
information useful for booting computing device 102. Con-
tents and partitioning of embedded flash 134 may vary and
are described below.

CRM 116 also contains data stream manager 136 (stream
manager 136), which in this particular example, is embodied
as processor-executable instructions that are executable by
processor 114 to implement various functionalities. Alter-
nately or additionally, stream manager 136 may be imple-
mented, in part or whole, via firmware or hardware (not
shown) or any suitable combination thereof. Stream man-
ager 136 may enable boot images or boot data stored by
embedded flash 134 to be streamed to non-contiguous
memory locations and/or to multiple destination memory



US 9,436,629 B2

5

devices. The implementation and use of stream manager 136
varies and is described below.

Computing device 102 may also include I/O ports 138,
display 140, and network interface(s) 142. /O ports 138
allow computing device 102 to interact with other devices or
users. /O ports 138 may include any combination of internal
or external ports, such as USB ports, audio ports, Serial ATA
(SATA) ports, PCl-express based ports or card-slots, secure
digital input/output (SDIO) slots, and/or other legacy ports.
Various peripherals may be operatively coupled with I/O
ports 138, such as human-input devices (HIDs), external
computer-readable storage media, or other peripherals.

Display 140 may present a user interface or rendered
graphics associated with an operating system or application
of computing device 102. Display 140 may include a touch-
input sensor (not shown), such as a touch screen or touch-
sensitive overlay. Network interface(s) 142 provides con-
nectivity to one or more networks and other devices
connected therewith. Data communicated over network
interfaces 142 may be packetized or framed depending on a
communication protocol or standard by which computing
device 102 is communicating. Network interfaces 142 may
include wired interfaces, such as Ethernet or fiber optic
interfaces for communication over a local network, intranet,
or the Internet. Network interfaces 142 may also include
wireless interfaces that facilitate communication over wire-
less networks, such as wireless LANSs, cellular networks, or
wireless personal-area-networks (WPANS).

FIG. 2 illustrates an example of embedded flash 134
generally at 200. Embedded flash 134 includes boot partition
202 and data partition 204, capacities of which may be
configured to any suitable size or number of data blocks.
Data partition 204 may include data associated with an
operating system, applications, hardware drivers, user data,
and the like. Boot partition includes boot code (e.g., low-
level code) and other data useful for configuring components
of, and subsequently booting, computing device 102. In this
particular example, boot partition 202 includes boot image-0
206, boot image-1 208, and boot image-2 210 (referred to
collectively as boot images 206-210). Boot partition 202
may also include boot code or data useful for constructing
descriptors for streaming boot images 206-210 from boot
partition 202. Boot images 206-210 may include any suit-
able code, such as boot code, boot loaders, initialization
data, headers, address tables, descriptors, firmware, configu-
ration instructions, and the like.

Boot image-0 206 includes header 212 and is streamed
from boot partition 202 using a transfer descriptor. Header
212 includes descriptor data 214, which is useful to con-
struct transfer descriptors for streaming boot image-1 208
and/or boot image-2 210 from boot partition 202. Header
212 may also include data useful for configuring other
memories of computing device 102, such as DRAM 126.
Header 212 may include any suitable amount of data, such
as 16 or 32 blocks of data.

Transfer descriptors typically include a destination
address, a length indicator specifying an amount of data to
transfer, and various attribute fields (e.g., descriptor type,
validity, end, interrupt action). In this particular example, a
transfer descriptor for transferring boot image-0 206
includes information or parameters for streaming header 212
from embedded flash 134. This descriptor and a link-to-self
descriptor may be constructed in volatile memory (e.g.,
SRAM 124) prior to being input into DMA engine 132 for
execution. The link-to-self descriptor is a link type descrip-
tor that references, or points back to, itself. Causing a
memory controller to execute the link-to-self descriptor may

10

15

20

25

30

35

40

45

50

55

60

65

6

be effective to stall the memory controller. Alternately or
additionally, executing a link-to-self descriptor may stall
data lines or a clock line of a memory controller. The use of
the link-to-self descriptor may vary and is described below.

Techniques of Dynamic Boot Image Streaming

The following discussion describes techniques of
dynamic boot image streaming. These techniques can be
implemented using the previously described environment or
entities, such as memory controller 130 or stream manager
136 of FIG. 1 embodied on a computing device 102. These
techniques include methods illustrated in FIGS. 3, 5, and 6,
each of which is shown as a set of operations performed by
one or more entities. These methods are not necessarily
limited to the orders shown for performing the operations.
Further, these methods may be used in conjunction with one
another, in whole or in part, whether performed by the same
entity, separate entities, or any combination thereof. In
portions of the following discussion, reference will be made
to operating environment 100 of FIG. 1 and entities of FIGS.
2 and 4 by way of example. Such reference is not to be taken
as limited to operating environment 100 but rather as
illustrative of one of a variety of examples.

FIG. 3 depicts a method 300 for stalling a memory
controller streaming multiple boot images, including opera-
tions performed by stream manager 136 of FIG. 1.

At 302, a streaming of multiple boot images from a first
memory to a second memory is initiated. The streaming may
be initiated responsive to a power-on event or a command
(e.g., a boot initiation command). The multiple boot images
are streamed by a memory controller or DMA engine
associated with the first memory. The streaming operations
performed by the memory controller or DMA engine are
based on one or more ADMA transfer and/or link descrip-
tors. A first one of the boot images may include transfer
descriptors and/or a header of fixed length, such as 16 or 32
data blocks. This header includes information useful to
construct additional descriptors or to configure other memo-
ries. Other ones of the multiple boot images may include
boot loaders, configuration files, operating systems, boot
code, and the like.

As an example, consider a user powering-on smart-phone
104 of FIG. 1. Assume here that smart-phone 104 is tran-
sitioning to an “on” state from an “off” state in which power
was removed from volatile memory 118 and other various
components of smart-phone 104. Here, stream manager 136
sends a boot initiation command (e.g., CMD_0
OxFFFFFFFA) to memory controller 130 of embedded
memory 122, which may be configured as an eMMC device.
Stream manager 136 then points EXT_CSD register of
memory controller 130 to a transfer descriptor when initi-
ating a streaming operation. In some cases, stream manager
136 may construct the transfer descriptor and/or a link-to-
self descriptor prior to initiating the streaming operation.
The transfer descriptor indicates a destination address of
SRAM 124 to which boot image-0 206 (header 212) is to be
streamed. DMA engine 132, which is associated with
memory controller 130, then begins to stream boot image-0
206 to SRAM 124 as illustrated in FIG. 4.

At 304, a memory controller that is streaming the multiple
boot images is stalled. The memory controller may be stalled
after a first one of the boot images is streamed into the
second memory. The first one of the boot images may be a
header file including data useful to construct transfer
descriptors for other ones of the multiple boot images. The
memory controller may be stalled by causing the memory
controller to execute a link-to-self descriptor. In some cases,
the memory controller is configured to incrementally



US 9,436,629 B2

7

execute a series of descriptors during the streaming opera-
tion. In such case, the link-to-self descriptor may be placed
in a memory location following a location of the descriptor
for streaming the first boot image.

In the context of the present example, assume that a
link-to-self descriptor is located at an address following the
transfer descriptor. Once memory controller 130 of embed-
ded memory 122 executes the transfer descriptor to stream
boot image-0 206 via DMA engine 132, a system address
register of memory controller 130 is incremented to the
address of the link-to-self descriptor. Memory controller 130
then begins executing the link-to-self descriptor, and opera-
tion of memory controller 130 stalls. Executing the link-to-
self descriptor also stalls a clock line of embedded memory
122 and DMA engine 132.

At 306, a descriptor for streaming a second one of the
multiple boot images is generated while the memory con-
troller is stalled. This descriptor is generated by a processor
executing code of the first boot image (e.g., descriptor data
214 of header 212) from the second memory. The descriptor
is a transfer descriptor for streaming the second boot image
to a non-contiguous location of the second memory or a third
memory. In some cases, the descriptor is constructed from a
header previously streamed to the second memory. Alter-
nately or additionally, the header may include initialization
data for the third memory, such as data for configuring for
DRAM or DDR. Memory controller 130 and DMA engine
132 are not necessarily aware of being stalled while the
descriptor is generated.

Continuing the ongoing example, stream manager 136
causes processor 114 to execute boot code of header 212
from SRAM 124 to construct additional descriptors. These
additional descriptors are associated with boot image-1 208
and boot image-2 210. Processor 114 also executes the boot
code of header 212 to configure DRAM 126 for receiving
boot image-1 208 and boot image-2 210. In other instances,
the additional descriptors are configured to stream boot
images to non-contiguous locations of SRAM 124, such as
specifying offsets between destination addresses for the boot
images.

At 308, the memory controller is resumed to stream the
second boot image to the non-contiguous location of the
second memory or to the third memory. The memory
controller is resumed by pointing the link-to-self descriptor
to a descriptor for streaming the second boot image. Resum-
ing the memory controller causes the DMA engine to
continue the streaming operation initiated at 302 without
interrupting a host controller driver. Resuming the memory
controller also resumes data lines or the clock line associated
with the memory controller. By so doing, boot images can be
streamed to non-contiguous and/or non-sequential locations
of multiple memories with a single streaming operation (e.g.
ADMA transfers in alternate boot mode).

Concluding the present example, stream manager 136
points the link-to-self descriptor being executing by memory
controller 130 to a first of the additional descriptors gener-
ated while memory controller 130 was stalled. This is
effective to cause memory controller 130 to resume the
streaming operation boot image-1 208 and boot image-2 210
based on the additional link descriptors. Here, DMA engine
132 streams boot image-1 208 and boot image-2 210 to
non-contiguous and non-sequential locations of DRAM 126
as illustrated by FIG. 4. Processor 114 can then complete the
boot process of smart-phone 104 by executing the boot code
from the respective locations of SRAM 124 and DRAM 126.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 5 depicts a method 500 for streaming boot images to
non-contiguous locations of a memory device, including
operations performed by stream manager 136 of FIG. 1.

At 502, a boot initialization command is sent to a first
memory device. In some cases, the memory device may be
an embedded memory device configured to transfer boot
code, such as an eMMC memory device. The boot initial-
ization command is sent to a controller of the first memory
device. Alternately or additionally, a pre-idle command may
be sent to the memory controller to put the memory device
into an initial power-on-reset mode. The pre-idle command
may be sent prior to sending the boot initialization command
to the memory device. The memory device is pre-configured
to stream a boot image responsive to the boot initialization
command. For example, a boot partition and associated size
of the boot partition are set in a register accessible by the
memory controller (e.g., an EXT_CSD register). In some
cases, the boot initialization command is sufficient to cause
the memory device to start memory transfers associated with
booting a device.

At 504, a controller of the first memory device is caused
to execute a descriptor for streaming a header to a second
memory device. An address of the descriptor may be indi-
cated by a register of the controller. The descriptor indicates
a length of the header, such as 16 or 32 data blocks. In some
cases, the header is streamed by a DMA engine associated
with the controller. The second memory device may be a
memory device that needs little or no pre-configuration prior
to receiving the header, such as SRAM and the like.

At 506, the controller of the first memory device is caused
to execute a link-to-self descriptor effective to stall the
controller of the memory device. In some cases, stalling the
controller stalls data lines or a clock line associated with the
controller. Alternately or additionally, a DMA engine asso-
ciated with the controller may also be stalled while the
controller executes the link-to-self descriptor. For example,
stream manager 136 may cause memory controller 130 to
execute a link-to-self descriptor after a header is streamed
into SRAM.

At 508, the header is processed to construct additional
descriptors for streaming one or more boot images to
non-contiguous locations of the second memory device. The
header is executed from the second memory device by a
processor to construct the additional descriptors. The addi-
tional descriptors may be constructed while the memory
controller is stalled. In some cases, the one or more boot
images include boot loader or boot code for configuring
components of a device for use. The second memory can be
a volatile memory from which the one or more boot images
are executed from.

At 510, the link-to-self descriptor is pointed to the addi-
tional descriptors effective to resume the controller of the
first memory device. The first memory device then streams
the one or more boot images to non-contiguous locations of
the second memory device. For example, stream manager
136 may point a link-to-self descriptor being executed by
memory controller 130 to data descriptors for streaming
boot images 206-210 or remaining code thereof.

FIG. 6 depicts a method 600 for streaming boot images to
multiple memory devices, including operations performed
by stream manager 136 of FIG. 1.

At 602, a boot initialization command is sent to a first
memory device. In some cases, the first memory device is an
embedded memory device configured to transfer boot code
during a boot sequence, such as an eMMC memory device.
A pre-idle command (e.g., CMD OxFOFOFOF0) can be sent
prior to the boot initialization command to put the first



US 9,436,629 B2

9

memory device in a pre-idle state. The boot initialization
command is sent to a controller of the first memory device.
In some cases, the first memory device is pre-configured to
stream a boot image responsive to the boot initialization
command. For example, a boot partition and associated size
of'the boot partition may be set in a register accessible by the
memory controller (e.g., an EXT_CSD register). In such
cases, the boot initialization command is sufficient to cause
a controller to start streaming boot images from the first
memory device.

At 604, a controller of the first memory device is caused
to execute a descriptor for streaming a header to a second
memory device. An address of the descriptor is indicated by
a register of the controller. The descriptor may also indicate
a length of the header, such as 16 or 32 data blocks. In some
cases, the header is streamed by a DMA engine associated
with the controller. The second memory device may be a
memory device that needs little or no pre-configuration prior
to receiving the header, such as SRAM and the like.

At 606, the controller of the first memory device is caused
to execute a link-to-self descriptor effective to stall the
controller of the memory device. Stalling the controller may
stall data lines or a clock line associated with the controller.
Alternately or additionally, a DMA engine associated with
the controller may also be stalled while the controller
executes the link-to-self descriptor. For example, stream
manager 136 can cause memory controller 130 to execute a
link-to-self descriptor after a header is streamed into SRAM.

At 608, the header is processed to construct additional
descriptors for streaming multiple boot images to a third
memory device. The header may be executed from the
second memory device by a processor to construct the
additional descriptors. The additional descriptors are con-
structed while the memory controller is stalled. In some
cases, the multiple boot images include boot loader or boot
code for configuring components of a device for use. The
third memory device is a volatile memory that is of a
different type than that of the second memory device. For
example, the second memory device may comprise SRAM
and the third memory device may comprise DRAM.

At 610, the third memory device is configured to receive
a boot image streamed from the first memory device. In
some cases, third memory is configured based on data or
information included in the header. In such cases, the
processor executes additional data of the header to configure
the third memory device. Configuring the third memory
device may include setting various parameters associated
with the third memory device, such as bus settings, data rate
settings, bank address settings, and the like.

At 612, the link-to-self descriptor is pointed to the addi-
tional descriptors effective to resume the controller of the
first memory device. The first memory device then streams
the multiple boot images to the third memory device. For
example, stream manager 136 may point a link-to-self
descriptor being executed by memory controller 130 to data
descriptors for streaming boot images 206-210. The multiple
boot images are streamed to non-contiguous and/or non-
sequential locations of the third memory device. For
example, boot image-2 210 can be streamed to a base
address of DRAM 126 and boot image-1 208 may be
streamed to another non-contiguous location of DRAM 126
as illustrated in FIG. 4.

System-on-Chip

FIG. 7 illustrates a System-on-Chip (SoC) 700, which can
implement various aspects of dynamic boot image stream-
ing. A SoC can be implemented in any suitable device, such
as a video game console, IP-enabled television, smart-

10

20

25

30

40

45

10

phone, desktop computer, laptop computer, access point,
wireless router, cellular broadband router, tablet computer,
server, network-enabled printer, set-top box, printer, scan-
ner, camera, picture frame, home appliance, thermostat,
home automation device, and/or any other type of electronic
device.

SoC 700 can be integrated with electronic circuitry, a
microprocessor, memory, input-output (I/O) logic control,
communication interfaces, other hardware, firmware, and/or
software needed to provide functionalities of a device, such
as any of the above-listed devices. SoC 700 can also include
an integrated data bus (not shown) that couples the various
components of the SoC for data communication between the
components. A memory storage device that includes SoC
700 can also be implemented with many combinations of
differing components. In some cases, these differing com-
ponents may be configured to implement concepts described
herein over various internal or external data interfaces.

In this example, SoC 700 includes various components
such as an input-output (I/O) logic control 702 (e.g., to
include electronic circuitry) and microprocessor 704. SoC
700 also includes memory 706, which can be any type
and/or combination of RAM, SRAM, DRAM, low-latency
nonvolatile memory, ROM, one-time programmable (OTP)
memory, and/or other suitable electronic data storage. Alter-
nately or additionally, SoC 700 may comprise a data inter-
face (not shown) for accessing additional or expandable
off-chip memory, such as external SRAM, DRAM, or flash
memory. SoC 700 can also include various firmware and/or
software, such as operating system(s) 708, which can be
computer-executable instructions maintained by memory
706 and executed by microprocessor 704. SoC 700 may also
include other various communication interfaces and com-
ponents embodied as hardware, firmware, software, or any
suitable combination thereof.

SoC 700 also includes memory controller 130, DMA
engine 132 embedded flash 134, and stream manager 136
(either of which may embodied as disparate or combined
components). Although not shown, embedded flash 134 may
include boot partition 202 and data partition 204, for storing
any suitable data (e.g., user data or boot images 206-210).
Examples of these various components, functions, and/or
entities, and their corresponding functionality, are described
with reference to the respective components of the environ-
ment 100 and various configurations as illustrated by FIGS.
2 and 4.

Stream manager 136, either independently or in combi-
nation with other entities (e.g., memory controller 130), can
be implemented as computer-executable instructions main-
tained by memory 706 and executed by microprocessor 704
to implement various embodiments and/or features
described herein. Stream manager 136 may also be provided
integral with other entities of the SoC, such as integrated a
memory controller associated with memory 706 or another
suitable software, firmware, or hardware component within
SoC 700. Alternatively or additionally, stream manager 136
and the other components can be implemented as hardware,
firmware, fixed logic circuitry, or any combination thereof
that is implemented in connection with the I/O logic control
702 and/or other signal processing and control circuits of
SoC 700.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
operations, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the specific features or operations described above, includ-
ing orders in which they are performed.



US 9,436,629 B2

11

What is claimed is:

1. A method comprising:

causing a memory controller that is streaming, via a direct

memory access (DMA) operation, multiple boot
images from a first memory to a second memory to
execute a link-to-self effective to stall the memory
controller after streaming a first one of the multiple
boot images to the second memory, the second memory
accessible by a host device associated with the memory
controller;

generating, via a processor of the host device, while the

memory controller is stalled, and based on the first boot
image streamed to the second memory, a descriptor for
streaming a second one of the multiple boot images
from the first memory to a non-contiguous memory
location; and

pointing, via the processor of the host device, the link-

to-self descriptor to a location of the descriptor for
streaming the second boot image effective to resume
the memory controller to stream, based on the descrip-
tor and via another DMA operation, the second boot
image to the non-contiguous memory location.

2. The method of claim 1, wherein the first boot image
streamed to the second memory includes the link-to-self
descriptor and information useful to generate the descriptor
for streaming the second boot image.

3. The method of claim 1, wherein stalling the memory
controller stalls a clock line of the memory controller.

4. The method of claim 1, wherein the DMA operation
and the other DMA operation are performed via a DMA
engine associated with the memory controller.

5. The method of claim 1, wherein the memory controller
and the first memory are embodied as part of an embedded
multimedia card (eMMC) device.

6. The method of claim 1, wherein:

the first memory is single-level cell (SLC) or multi-level

cell (MLC) NAND based managed flash memory; and
the second memory is static random-access memory
(SRAM).

7. The method of claim 1, wherein the non-contiguous
memory location is a memory location of the second
memory or a third memory.

8. The method of claim 7, wherein the third memory is
dynamic random-access memory (DRAM), and further
comprising configuring, while the memory controller is
stalled, the third memory to receive the second boot image
from the first memory.

9. One or more computer-readable hardware-based stor-
age devices embodying processor-executable instructions
that, responsive to execution by a processor of a host device,
implement a stream manager to:

cause a memory controller that is streaming, via a direct

memory access (DMA) operation, multiple boot
images from a non-volatile memory to a volatile
memory to execute a link-to-self effective to stall the
memory controller after streaming a first one of the
multiple boot images to the volatile memory, the vola-
tile memory accessible by the host device;

generate, via the processor of the host device, while the

memory controller is stalled, and based on the first boot
image streamed to the volatile memory, a descriptor for
streaming a second one of the multiple boot images
from the non-volatile memory to a non-contiguous
location of the volatile memory or another volatile
memory; and

point, via the processor of the host device, the link-to-self

descriptor to a location of the descriptor for streaming

10

25

30

35

40

45

55

65

12

the second boot image effective to resume the memory
controller to stream, based on the descriptor and via
another DMA operation, the second boot image to the
non-contiguous location of the volatile memory or the
other volatile memory.
10. The one or more computer-readable hardware-based
storage devices of claim 9, wherein the memory controller
and non-volatile memory are embodied as an embedded
multimedia card (eMMC) device.
11. The one or more computer-readable hardware-based
storage devices of claim 9, wherein the stream manager is
further implemented to initiate the streaming of the multiple
boot images responsive to a single command or power event.
12. The one or more computer-readable hardware-based
storage devices of claim 9, wherein the first boot image
streamed to the volatile memory includes the link-to-self
descriptor and information useful to generate the descriptor
for streaming the second boot image.
13. The one or more computer-readable hardware-based
storage devices of claim 9, wherein stalling the memory
controller stalls a clock line of the memory controller.
14. The one or more computer-readable hardware-based
storage devices of claim 9, the other volatile memory is
dynamic random-access memory (DRAM), and the stream
manager is further implemented to configure, while the
memory controller is stalled, the DRAM to receive the
second boot image from the non-volatile memory.
15. The one or more computer-readable hardware-based
storage devices of claim 9, wherein:
the first memory is single-level cell (SLC) or multi-level
cell (MLC) NAND based managed flash memory; and
the second memory is static random-access memory
(SRAM).
16. A system comprising:
a first memory storing multiple boot images;
a memory controller configured to stream the multiple
boot images from the first memory via direct memory
access (DMA);
a second memory from which processor-executable
instructions of one or more of the multiple boot images
are executable;
a processor configured to execute the processor-execut-
able instructions of one or more of the multiple boot
images; and
a stream manager to:
cause, while streaming the multiple boot images from
the first memory to the second memory via a DMA
operation, the memory controller to execute a link-
to-self effective to stall the memory controller after
streaming a first one of the multiple boot images to
the second memory;

generate, via the processor of the system, while the
memory controller is stalled, and based on the first
boot image streamed to the second memory, a
descriptor for streaming a second one of the multiple
boot images from the first memory to a non-contigu-
ous memory location; and

point, via the processor of the system, the link-to-self
descriptor to a location of the descriptor for stream-
ing the second boot image effective to resume the
memory controller to stream, based on the descriptor
and via another DMA operation, the second boot
image to the non-contiguous memory location.

17. The system of claim 16, wherein the first boot image
streamed to the second memory includes the link-to-self
descriptor and information useful to generate the descriptor
for streaming the second boot image.



US 9,436,629 B2
13

18. The system of claim 16, wherein the non-contiguous
memory location is a memory location of the second
memory or a third memory.

19. The system of claim 16, wherein stalling the memory
controller stalls a clock line of the memory controller. 5
20. The system of claim 16, wherein the memory con-
troller and the first memory are embodied as part of an

embedded multimedia card (eMMC) device.

#* #* #* #* #*

14



